Шпаргалка: Влияние высоких температур на растения. Влияние высоких температур на растения Как температура влияет на аномалии цветка

потребности растений

Температура воздуха существенно влияет на комнатные растения, как и на любые другие живые организмы Земли. Большинство домашних растений родом из тропиков или субтропиков. В наших широтах их содержат в теплицах, где поддерживают специальный микроклимат. Эти факты могут заставить ошибочно полагать, что для всех комнатных цветов необходимо поддерживать высокую температуру воздуха.


На самом деле лишь небольшая часть растений может расти в наших квартирах при повышенной температуре (более 24°С). Это объясняется тем, что наши условия ощутимо отличаются от естественной среды обитания большей сухостью, а также меньшей интенсивностью и длительностью освещения. Поэтому для комфортного роста комнатных растений в домашних условиях нужно сделать поправку и на температуру воздуха, которая должна быть ниже, чем у них на родине.



1. Тепловой режим для комнатных растений

Как температура влияет на растения?

Температурный режим измеряется количеством тепла и продолжительностью воздействия определённой температуры. Для комнатных растений существуют минимальные и максимальные границы температур, в пределах которых происходит их нормальное развитие (т.н. температурный диапазон).


Холодный воздух приводит к замедлению физиологических и биохимических процессов - уменьшению интенсивности фотосинтеза, дыхания, выработки и распределения органических веществ. С повышением температуры эти процессы активизируются.

Естественные колебания температуры

Ритмические изменения количества тепла происходят как в течение суток (смена дня и ночи), так и в течение года (смена времён года). Растения приспособились к подобным колебаниям, которые существуют в местах их естественного произрастания. Так, обитатели тропиков отрицательно реагируют на резкие смены температур, а жители умеренных широт могут переносить их значительные колебания. Более того, в холодный период у них наступает период покоя, который необходим для их дальнейшего активного развития.


При большой разнице летних и зимних, дневных и ночных температур (широком температурном диапазоне) лучше всего выращивать фикусы, алое, кливию, сансевьеру и аспидистру.


Общее правило: ночью должно быть прохладнее, чем днём на 2-3°С.

Оптимальная температура

Для нормального роста тропических красивоцветущих и декоративно-лиственных растений необходима температура в пределах 20-25°С (для всех ароидных, бегониевых, бромелиевых, тутовых и др.). Растения рода пеперомия, колеус, санхеция и др. лучше всего развиваются при 18-20°С. Жителям субтропиков (зебрина, фатсия, плющ, аукуба, тетрастигма и др.) будет комфортно при 15-18°С.


Самыми требовательными к теплу являются тропические пёстролистные растения - кордилина, кодиэум, каладиум и др.


Зимние температуры и период покоя

Зимой некоторым растениям нужна прохлада, т.к. у них замедляют процесс роста или они находятся в состоянии покоя. Например, для эвкалиптов и рододендронов зимой желательна температура 5-8°С, для гортензии, примулы, цикламена и пеларгонии - около 10-15°С.


Другой пример. Чтобы заставить такие растения, как антуриум Шерцера, аспарагус Шпренгера и спатифилюм Валлиса цвети ещё более интенсивно, осенью во время периода покоя, температуру воздуха снижают до 15-18°С, а в январе повышают до 20-22°С.


Частой причиной отсутствия цветения является несоблюдение естественного ритма жизни растений - их периода покоя.


Например, кактусы, которые зимой при умеренной температуре и регулярных поливах дают уродливые приросты и перестают цвести. Гиппеаструмы перестают закладывать бутоны, и ничем не могут порадовать, кроме как зелёными листьями.

Важна ли температура грунта?

Обычно температура земли в горшке на 1-2°С меньше, чем окружающего воздуха. Зимой необходимо следить, чтобы горшки с растениями не переохлаждались и не ставить их близко к оконному стеклу. При переохлаждении грунта, корни начинают плохо усваивать воду, что приводит к их гниению и гибели растения. Лучшим решением будет пробковый коврик, деревянная, пенопластовая или картонная подставка под горшками.


Например, для такого растения, как диффенбахия, температура субстрата должна быть в пределах 24-27°С. А таким, как гардения, фикусы, эухарис, которые любят тёплый грунт, можно наливать тёплую воду в поддоны.


2. Группы растений по отношению к теплу

Растения для прохладных мест (10-16°С)

К ним можно отнести такие растения, как азалия, олеандр, пеларгония, аспидистра, фикусы, традесканция, розы, фуксия, первоцветы, аукуба, камнеломка, плющи, циперус, хлорофитум, араукария, аспарагус, драцена, бегония, бальзамин, бромелиевые, каланхое, колеус, маранта, папоротники, шефлера, филодендрон, хойя, пеперомия, спатифилюм и др..

Растения для умеренно тёплых мест (17-20°С)

При умеренной температуре будут хорошо развиваться антуриум, клеродендрон, сенполия, плющ восковой, панданусы, синингия, монстера, пальма Ливистона, кокосовая пальма, афеландра, гинура, рео, пилея

Теплолюбивые растения (20-25°С)

В тепле наиболее комфортно чувствуют себя: аглаонема, диффенбахия, калатея, кодиэум, орхидеи, каладиум, сингониум, дизиготека, акалифа и др.. (читайте информацию отдельно по каждому растению)

Растения, которые пребывают в состоянии покоя (5-8°С)

Группа растений, которым нужен отдых и понижение температуры в зимнее время: суккуленты, лавр, рододендрон, фатсия, хлорофитум и др..


3. Несоблюдение теплового режима

Скачки температуры

Очень вредны внезапные понижения температуры, особенно более чем на 6°С. Например, при снижении температуры до 10°С у диффенбахии пятнистой начинают желтеть и отмирать листья; при 15°С сциндапсус золотистый перестаёт расти.


Как правило, резкие скачки температуры вызывают быстрое пожелтение и опадание листьев. Поэтому, если вы проветриваете комнату в зимнее время, постарайтесь убрать с подоконника все комнатные растения.

Слишком низкая температура

При слишком низкой температуре растения долго не цветут или образуют недоразвитые цветки, листья сворачиваются, приобретают тёмный цвет и отмирают. Исключения могут составить лишь суккуленты, в том числе кактусы, которые приспособлены к высокой дневной и низкой ночной температуре.


Стоит учитывать то, что в холодное время года температура на подоконнике может быть меньше на 1-5°С.


Слишком высокая температура

Жаркий воздух зимой при недостатке света также отрицательно влияет на тропические растения. Особенно, если ночная температура выше дневной. В этом случае во время дыхания в ночное время происходит перерасход питательных веществ, накопленных во время фотосинтеза днём. Растение истощается, побеги становятся неестественно длинными, новые листья мельчают, старые засыхают и опадают.

День добрый, уважаемые друзья!

Про влияние тепла на растения мы поговорим в этой статье.

Нередко причинами плохого роста и развития растений является избыток или недостаток тепла. Низкая или слишком высокая температура вызывает в тканях растений порой необратимые процессы. Связаны они с изменением структуры белковых молекул в растительных клетках.

Происходящие изменения можно вовремя исправить, если грамотно скорректировать интенсивность температуры и использовать дополнительные меры. Например, в условиях избытка тепла рекомендуется не только притенять страдающие растения, создавая прохладу, но и чаще опрыскивать. Чтобы не допустить переохлаждения, следует продумать временные парнички или укрытия для растений.

Влияние недостатка тепла на растения

У разных культур крайние значения одного и то же фактора могут вызывать разные изменения. Так, например, низкая температура у является причиной покраснения листьев, у агератума и примул вызывает хлороз, а у лилий – трещины на стеблях и листьях. Для ирисов и опасно раннее понижение температуры осенью. В таких условиях у цветов возможно развитие гнили корневой шейки корневищ. В целом, при недостатке тепла практически у всех растений задерживается рост.

Некоторые теплолюбивые культуры, которые летом выращивают под открытым небом, не выдерживают даже кратковременного недостатка тепла. Похолодание до -1°С вызывает у них подмерзание надземных органов. К таким видам относятся многие южные растения, которые выращиваются в контейнерах (юкка, пальмы, агавы) и ковровые растения (клейния, эхеверия, альтернантера).

Влияние избытка тепла на растения

Слишком высокие температуры не менее опасны. Особенно это касается луковичных и клубнелуковичных растений, только что посаженных в грунт. Избыток тепла тормозит развитие и рост корневой системы. В результате недоразвитая подземная часть не в состоянии усваивать необходимое количество химических соединений из почвы. Надземная часть луковичных начинает стремительно страдать от нехватки питания. Появившиеся бутоны не могут долгое время распуститься и, в конце концов, засыхают. Корни таких растений загнивают и отмирают.

Замечено, что не только луковичным, но и большинству цветочных культур в начале вегетативного периода необходимы более низкие значения температуры, чем в остальные периоды. При этом, ночью все растения более устойчивы к недостатку тепла, чем в дневное время.

Среди всех декоративных и садовых культур выделяются растения, которые благополучно переносят как пониженные, так и повышенные температуры. К ним относятся , драцена, алоэ, кливия, аспидистра, эпифиллюм, филлокактус. Такие растения можно спокойно выращивать как в относительно холодных, так и в жарких помещениях.

Итак, можно сделать вывод, что в основном влияние тепла на растения очень велико, поэтому необходимо стараться создавать для каждой культуры наиболее приемлемый температурный режим. До встречи, друзья!

Негативное влияние холода зависит от диапазона понижения температур и продолжительности их воздействия. Уже неэкстремальные низкие температуры неблагоприятно сказываются на растениях, поскольку:

  • тормозят основные физиологические процессы (фотосинтез, транспирацию, водообмен и т.д.),
  • снижают энергетическую эффективность дыхания,
  • изменяют функциональную активность мембран,
  • приводят к преобладанию в обмене веществ гидролитических реакций.

Внешне повреждение холодом сопровождается потерей листьями тургора и изменением их окраски из-за разрушения хлорофилла. Основная причина повреждающего действия низкой положительной температуры на теплолюбивые растения - нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в гель. В результате, с одной стороны, повышается проницаемость мембран для ионов, а с другой - увеличивается энергия активации ферментов, связанных с мембраной. Скорость реакций, катализируемых мембранными ферментами, снижается после фазового перехода быстрее, чем скорость реакций, связанных с растворимыми энзимами. Все это приводит к неблагоприятным сдвигам в обмене веществ, резкому возрастанию количества эндогенных токсикантов, а при длительном действии низкой температуры - к гибели растения.

Установлено, что действие низких отрицательных температур находится в зависимости от состояния растений и, в частности, от оводненности тканей организма. Так, сухие семена могут выносить понижение температуры до -196°С (температура жидкого азота). Это показывает, что губительное влияние низкой температуры принципиально отлично от влияния высокой температуры, вызы­вающей непосредственное свертывание белков.

Основное повреждающее влия­ние на растительный организм оказывает льдообразование. При этом лед может образовываться как в самой клетке, так и вне клетки . При быстром понижении температуры образование льда происходит внутри клетки (в цитоплазме, вакуолях). При постепенном снижении температуры кристаллы льда образуются в первую очередь в межклетниках. Плазмалемма препятствует проникновению кристаллов льда внутрь клетки. Содержимое клетки находится в переохлажденном состоянии. В результате первоначального образования льда вне клеток водный потен­циал в межклеточном пространстве становится более отрицательным по срав­нению с водным потенциалом в клетке. Происходит перераспределение воды. Равновесие между содержанием воды в межклетниках и в клетке достигается благодаря:

  • либо оттоку воды из клетки,
  • либо образованию внутриклеточного льда.

Если скорость оттока воды из клетки соответствует скорости понижения температуры, то внутриклеточный лед не образуется. Однако гибель клетки и организма в целом может происходить в результате того, что образовавшиеся в межклетниках кристаллы льда, оттягивая воду из клет­ки, вызывают ее обезвоживание и одновременно оказывают на цитоплазму ме­ханическое давление, повреждающее клеточные структуры. Это вызывает ряд последствий:

  • потерю тургора,
  • повышение концентрации клеточного сока,
  • рез­кое уменьшение объема клеток,
  • сдвиг значений рН в неблагоприятную сторону.

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость.

Холодостойкость растений – способность теплолюбивых растений переносить низкие положительные температуры. Защитное значение при действии низких положительных температур на теплолюбивые растения имеет ряд приспособлений. Прежде всего, это поддержание стабильности мембран и предотвращение утечки ионов . Устойчивые растения отличаются большей долей ненасыщенных жирных кислот в составе фосфолипидов мембран. Это позволяет поддерживать подвижность мембран и предохраняет от разрушений. В этой связи большую роль выполняют ферменты ацетилтрансферазы и десатуразы. Последние приводят к образованию двойных связей в насыщенных жирных кислотах.

Приспособительные реакции к низким положительным температурам проявляются в способности поддерживать метаболизм при ее снижении. Это достигается более широким температурным диапазоном работы ферментов, синтезом протекторных соединений. У устойчивых растений возрастает роль пентозофосфатного пути дыхания, эффективность работы антиоксидантной системы, синтезируются стрессовые белки. Показано, что при действии низких положительных температур индуцируется синтез низкомолекулярных белков.

Для повышения холодостойкости используется предпосевное замачивание семян. Эффективным является и использование микроэлементов (Zn, Mn, Сu, В, Мо). Так, замачивание семян в растворах борной кислоты, сульфата цинка или сульфата меди повышает холодоустойчивость растений.

Морозоустойчивость растений – способность растений переносить отрицательные температуры.

Адаптации растений к отрицательным температурам . Существуют два типа приспособлений к действию отрицательных температур:

  • уход от повреждающего действия фактора (пассивная адаптация),
  • повышение выживаемости (активная адаптация).

Уход от повреждающего действия низких температур достигается, прежде всего, за счет короткого онтогенеза – это уход во времени . У однолетних растений жизненный цикл заканчивается до наступления отрицательных температур. Эти растения до наступления осенних холодов успевают дать семена.

Большая часть многолетников теряет свои надземные органы и перезимовывает в виде луковиц, клубней или корневищ, хорошо защищенных от мороза слоем почвы и снега – это уход в пространстве от повреждающего действия низких температур.

Закаливание – это обратимое физиологическое приспособление к неблагоприятным воздействиям, происходящее под влиянием определенных внешних условий, относится к активной адаптации. Физиологическая природа процесса закаливания к отрицательным температурам была раскрыта благодаря работам И.И. Туманова и его школы.

В результате процесса закаливания морозоустойчивость организма резко повышается. Способностью к закаливанию обладают не все растительные организмы, она зависит от вида растения, его происхождения. Растения южного происхождения к закаливанию не способны. У растений северных широт процесс закаливания приурочен лишь к определенным этапам развития.

Закаливание растений проходит в две фазы:

Первая фаза закаливания проходит на свету при несколько пониженных плюсовых температурах (днем около 10°С, ночью около 2°С) и умеренной влажности. В эту фазу продолжается дальнейшее замедление, и даже полная остановка ростовых процессов.

Особенное значение в развитии устойчивости растений к морозу в эту фазу имеет накопление веществ-криопротекторов, выполняющих защитную функцию: сахарозы, моносахаридов, растворимых белков и др. Накапливаясь в клетках, сахара повышают концентрацию клеточного сока, снижают водный потенциал. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление сахаров стабилизирует клеточные структуры, в частности хлоропласты, благодаря чему они продолжают функционировать.

Вторая фаза закаливания протекает при дальнейшем понижении температуры (около 0°С) и не требует света. В связи с этим для травянистых растений она может протекать и под снегом. В эту фазу происходит отток воды из клеток, а также перестройка структуры протопласта. Продолжается новообразование специфических, устойчивых к обезвоживанию белков. Важное значение имеет изменение межмолекулярных связей белков цитоплазмы. При обезвоживании, происходящем под влиянием льдообразования, происходит сближение белковых молекул. Связи между ними рвутся и не восстанавливаются в прежнем виде из-за слишком сильного сближения и деформации белковых молекул. В связи с этим большое значение имеет наличие сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды и препятствуют сближению молекул белка. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдообразования.

Рост растении возможен в сравнительно широком диапазоне температур и определяется географическим происхождением данного вида. Требования растения к температуре меняются с возрастом, различны у отдельных органов растения (листья, корни, плодоэлементы и др.). Для роста большинства сельскохо­зяйственных растений России нижняя температурная граница соответствует температуре замерзания клеточного сока (около -1...-3 °С), а верхняя - коагуляции белков протоплазмы (около 60 "С). Вспомним, что температура влияет на биохимические процессы дыхания, фотосинтеза и других метаболических систем растений, а графики зависимости роста растений и активности ферментов от температуры близки по форме (колоколообразная кривая).

Температурные оптимумы для роста. Для появления всходов требуется более высокая температура, чем для прорастания семян (табл. 22).

22. Потребность семян полевых культур в биологически минимальных температурах (по В. Н. Степанову)

Температура, "С

прорастання семян 1 появления всходов

Горчица, конопля, рыжик 0-1 2-3

Рожь, пшеница, ячмень, овес, 1-2 4-5

горох, вика, чечевица, чина

Лен, гречиха, люпин, бобы, 3-4 5-6

нуг, свекла, сафлор

Подсолнечник, перилла 5-6 7-8

Кукуруза, просо, соя 8-10 10-11

Фасоль, клещевина, сорго 10-12 12-15

Х-волчатник, рис, кунжут 12-14 14-15

При анализе роста растений выделяют три кардинальные тем­пературные точки: минимальную (рост только начинается), оп­тимальную (наиболее благоприятная для роста) и максимальную температуру (рост прекращается).

Различают растения тешолюбивые- с минимальными тем­пературами для роста более 10 "С и оптимальными 30-35 "С (кукуруза, огурец, дыня, тыква), холодостойкие - с минималь­ными температурами для роста в пределам 0-5 "С н оптималь­ными 25-31 "С. Максимальные температуры для большинства растений 37-44 "С, для южных 44-50 "С. При увеличении температуры на 10 °С в зоне оптимальных значений скорость роста увеличивается в 2-3 раза. Повышение температуры выше оптимальной замедляет рост и сокращает его период. Опти­мальная температура для роста корневых систем ниже, чем для надземных органов. Оптимум для роста выше, чем для фото­синтеза.

Можно предположить, что при высокой температуре имеет место недостаток АТФ и НАДФН, необходимых для восстанови­тельных процессов, что вызывает торможение роста. Температу­ра, оптимальная для роста, может быть неблагоприятной для развития растения. Оптимум для роста меняется на протяжении вегетационного периода и в течение суток, что объясняется за­крепленной в геноме растений потребностью к смене темпера­тур, имевшей место на исторической родине растений. Многие растения интенсивнее растут в ночной период суток.

Термопериодизм. Росту многих растений благоприятствуем смена температуры в течение суток: днем повышенная, а ночью пониженная. Так, для растений томата оптимальная температур_) днем 26 "С, а ночью 17-19 _С. Это явление Ф. Вент (1957) назвал термопериоднзмом. Термопериодии! - реакция растение) на периодическую смену повышенных и пониженных температур, выражающаяся в изменении процессов роста и развитие! (М. *. Чайлахян, 1982). Различают суточный и сезонный термо­периоднзм. Для тропических растений разница между дневными и ночными температурами составляет 3-6 °С, для растений уме­ренного пояса - 5-7 "С. Это важно учитывать при выращивании растений в поле, теплицах и фитотронах, районировании культур и сортов сельскохозяйственных растений.

Чередование высоких и низких температур служит регулятора?__ внутренних часов растений, как п фотопе1_иодизм. Относи­тельно низкие ночные температуры повышают унижай картофеля (Ф. Вент. 1959), сахаристость корнеплолок сахарной свеклы, ус­коряют рост корневой системы н боковых побегов * растений томата (Н. И. Якушкмна, 1980). Низкие температуры, возможно, повышают активность ферментов, осуществляющих гидролиз) крахмала в листьях, а образующиеся растворимые формы углево­дов передвигаются в корни н боковые побеги.

Выполнила: Галимова А.Р

Действие экстремальных температур на растения

В ходе эволюции растения довольно хорошо адаптировались к воздействию низких и высоких температур. Однако эти приспособления не столь совершенны, поэтому крайние экстремальные температуры могут вызвать те или иные повреждения и даже гибель растения. Диапазон температур, действующих в природе на растения, достаточно широк: от -77ºС до + 55°С, т.е. составляет 132°С. Наиболее благоприятными для жизни большинства наземных организмов являются температуры +15 - +30°С.

Высокие температуры

Жаростойкие - главным образом низшие растения, например, термофильные бактерии и сине-зеленые водоросли.

Эта группа организмов способна выдерживать повышение температуры до 75-90°С;

Устойчивость растений к низким температурам подразделяют на:

Холодостойкость;

Морозоустойчивость.

Холодостойкость растений

способность теплолюбивых растений переносить низкие положительные температуры. Теплолюбивые растения сильно страдают при положительных пониженных температурах. Внешними симптомами страдания растений являются увядание листьев, появление некротических пятен.

Морозоустойчивость

способность растений переносить отрицательные температуры. Двулетние и многолетние растения, растущие в умеренной полосе, периодически подвергаются воздействию низких отрицательных температур. Разные растения обладают неодинаковой устойчивостью к этому воздействию.

Морозоустойчивые растения

Влияние на растения низких температур

При быстром понижении температуры образование льда происходит внутри клетки При постепенном снижении температуры кристаллы льда образуются в первую очередь в межклетниках. Гибель клетки и организма в целом может происходить в результате того, что образовавшиеся в межклетниках кристаллы льда, оттягивая воду из клетки, вызывают ее обезвоживание и одновременно оказывают на цитоплазму механическое давление, повреждающее клеточные структуры. Это вызывает ряд последствий – потерю тургора, повышение концентрации клеточного сока, резкое уменьшение объема клеток, сдвиг значений рН в неблагоприятную сторону.

Влияние на растения низких температур

Плазмалемма теряет полупроницаемость. Нарушается работа ферментов, локализованных на мембранах хлоропластов и митохондрий, и связанные с ними процессы окислительного и фотосинтетического фосфорилирования. Интенсивность фотосинтеза снижается, уменьшается отток ассимилятов. Именно изменение свойств мембран является первой причиной повреждения клеток. В некоторых случаях повреждение мембран наступает при оттаивании. Таким образом, если клетка не прошла процесса закаливания, цитоплазма свертывается из-за совместного влияния обезвоживания и механического давления образовавшихся в межклетниках кристаллов льда.

Адаптации растений к отрицательным температурам

Существуют два типа приспособлений к действию отрицательных температур:

уход от повреждающего действия фактора (пассивная адаптация)

повышение выживаемости (активная адаптация).

Статьи по теме: